AirSAR – Multi-frequency SAR data gathering from a NERC airborne survey platform

David Hall June 2014

AirSAR = an Airborne Synthetic Aperture Radar Demonstrator Facility

A collaborative project between The Satellite Applications Catapult, Airbus D&S, and NERC

Objectives of the AirSAR project

- To provide UK scientists with access to a high resolution, multi-frequency, multi-polarisation SAR facility producing co-time and co-located data streams
- To ensure that the facility can be made available on a regular year by year basis to create confidence that long term temporal effects can be studied
- To enable, in addition, the acquisition of co-located data streams from lidar, multi-spectral, and hyper-spectral sensors (but only) in *near* real time (minutes apart)
- To provide data sets representative of those that will be acquired from the NovaSAR-S satellite

Dornier 228 (G-ENVR)

Twin Otter (VP-FAZ)

Applications and science interests for the AirSAR project

Marine: including ship detection, ocean currents,

oil slicks and pollution

Forestry: canopy height, logging

Agriculture: soil moisture, eco-system mapping,

crop identification, rice crop monitoring in

tropical locations

Moorland: habitat monitoring, heathland burning,

InSAR**: archeology, slope stability

NovaSAR: preparation of representative data sets to

support development of Applications

** Not yet demonstrated. Processing techniques for repeat pass InSAR data sets are still under development.

Dornier 228 (G-ENVR)

Twin Otter (VP-FAZ)

Calibration status of the AirSAR radar instrument

Maintenance of short term stability

- Ultra-stable reference oscillator
- Loop-back of phase and radiometric measurements before and after each data acquisition
- Reference chirp read-out
- Well characterised antenna with gain profile & cross-pol isolation carefully established (still to be done)
- Gimbal platform driven from GPS / INU system

Achievement of absolute radiometric calibration

 Inclusion of reference trihedral reflectors of known RCS within the data acquisition field of view

Dornier 228 (G-ENVR)

Twin Otter (VP-FAZ)

Planned data acquisition campaigns for the AirSAR radar instrument

Proving Flight 14 May: Tested all SAR operating modes defined for scheduled 26June demo flights

- imaging performed at altitudes of 10,000ft,
 7,500ft, 4,500ft, 3,000ft, 2,500ft on E-W and W-E passes
- designated flight lines maintained within good tolerance – planned swaths acquired successfully

Acquired products (1, S-band)

S-band fully polarimetric, RGB composite Red=HH, Green=VV, Blue=HV

Acquired products (1, X-band)

X-band fully polarimetric, RGB composite Red=HH, Green=VV, Blue=HV

Acquired products (2)

S-band fully polarimetric, RGB composite

Harwell Science Park

Acquired Monday 23'rd June

Fields to the West of Harwell

Acquired Monday 23'rd June

24 June 2014

Summary of the AirSAR facility

- AirSAR is a facility that exists now to support UK science and UK scientists
- It will be available on a regular basis for the foreseeable future
- It can support Applications development
- Flying on the Twin Otter it can provide service during UK summer (Antarctic winter period)
- En route to the Antarctic it can potentially be diverted to image West Atlantic equatorial regions
- With additional funding, it can be implemented on NERC's Dornier 228, G-ENVR

Twin Otter (VP-FAZ)

Dornier 228 (G-ENVR)

Principal AirSAR Contacts

NERC – ARSF

Gary Llewellyn 01452 859945

gaew@nerc.ac.uk

Satellite Applications Catapult

Nick Veck

01235 567999

Nick.Veck@sa.catapult.org.uk

Airbus Defence & Space

Geoff Burbidge 02392 704999 geoff.burbidge@astrium.eads.net

Martin Cohen 02392 705481 martin.cohen@astrium.eads.net

Supplementary Information

Radar System characteristics

• Fundamental operation: programmable / dual frequency channel / coherent quad polar / deramp

Characteristics of X-band channel

Antenna beam (along track) 5.6 °

Antenna beam (across track) 23.3 °

Frequency band ** 9350MHz - 10650MHz (set by drive electronics)

Swath widths **
 1km / 8km (selectable with chosen bandwidth)

Spatial resolution ** 0.15 m

Sensitivity ** NEσ0 < -30dB

Polarisation ** sequential, HH, HV, VV, VH

Characteristics of S-band channel

Antenna beam (along track) 9.9 °

Antenna beam (across track) 28.7 °

Frequency band **
 3100MHz - 3300MHz (set by antenna bandwidth)

Swath widths **
 1km / 8km (selectable with chosen bandwidth)

Spatial resolution ** 1 - 2 m

Sensitivity ** NEσ0 < -30dB

Polarisation ** sequential, HH, HV, VV, VH

Potential exists for a low frequency channel covering VHF to L-band

^{**} indicates User programmable / selectable

Demonstration flight planning (1)

23 June - short flying day covering Oxfordshire, Wiltshire, North Hampshire

- AS14-08: WW
- AS14-12: RHS
- Imaging Harwell

24 June - longer day covering projects areas in Wiltshire, South Hampshire & IoW, Dorset

- AS14-21: Charmouth, Black Ven
- AS14-22: Cranborne, Avebury
- AS14-01: Portsmouth
- AS14-10: Sutton Farm
- AS14-08: Wytham, Savernake

25 June – fixed by planned logistics of ARL simulation, early start 07:30

- AS14-05: Isle of Wight
- AS14-21: Charmouth, Black Ven (repeat visit)

26 June - longest day, covering northern areas of North Yorshire and en route also Worcestershire

- AS14-15: Worcestershire
- AS14-17: Hollin Hill
- AS14-19: North York Moors, Peak district

Demonstration flight planning (2)

Demonstration flights to take place from ARSF facility at Staverton (Gloucester)

- w.b. 9 June: flight planning finalised; final dialogue with projects/users on logistics
 Noting that many projects will be conducting field work and setting up corner reflectors
- 19-20 June: Instrument installation on Twin Otter (VP-FAZ)
 Potential shakedown flight on 20 June (TBC)
- 23-26 June: SAR product acquisitions during Demonstration flights
 27 June potential contingency day
- w.b. 30 June: Initial data processing and release of priority data sets
- 7-26 July: Processing of acquired data sets
 Refinement of SAR processing parameters to maximise image quality
 Radiometric calibration of imagery
 Data processing and delivery to all projects in various formats

Demonstration flight planning (3)

Monday 23 June:

Run#	Run Name	mode	
1	WW1	502	
2	Harwell_SX	501	
3	RHS.1	505	
4	RHS.2	505	
5	RHS.3	505	
6	RHS.4	505	
7	Harwell_X	504	
8	WW2	502	

Estimate 3 hours flying time

Tuesday 24 June:

Run#	Run Name	Mode	
1	Charmouth1	502	
2	BlackVen1	502	
3	Cranborne1	502	
4	Cranborne2	502	
5	Ports1.1	233	
6	Ports1.2	233	
7	Ports1.3	231	
8	SF3000.1	501	
9	SF3000.2	501	
10	SF3000.3	501	
11	SF7500	502	
12	Mar1	231	
13	Mar2	231	

Estimate 4 hours flying time

Wednesday 25 June:

Run#	Run Name	mode
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11	Charmouth1	502
12	BlackVen1	502

Estimate 4+ hours flying time

Choice of modes dictated both by application requirements and by extent to which region of interest is in controlled airspace – constraints on operating altitude

Notes regarding run planning:

- a) not including transit to run locations
- b) not including calibration runs at Staverton (planned at end of day)
- c) planning for monitoring of oil spill simulation still in work
- d) final run order and mode selection to be confirmed in formally issued flight plan

Thursday 26 June:

D #	Б И	
Run#	Run Name	mode
1	Crop1	501
2	Crop2	501
3	Crop3	501
4	Crop4	501
5	Crop5	501
6	Crop6	501
7	HH R1.S-band	502
8	HH R1.X-band	503
9	HH S2.West42.S	502
10	HH S2.West42.X	503
11	HH S.1 South	502
12	HH S.1 North	502
13	HH R2.S-band	502
14	HH R2.X-band	503
15	NYM.1	502
16	NYM.2	502
17	NYM.3	502
18	NYM.4	502
19	NYM.5	502
20	NYM.6	502
21	HH R3.S-band	502
22	HH R3.X-band	503
23	Peak	231
24	Crop7	501
25	Crop8	501
26	Crop9	501

Estimate 5+ hours flying time

Demonstration flight planning (4)

Example of flight planning for 24 June:

- run sequence
- start and end waypoints
- visualisation on Google Earth

Run#	Run Name	mode
1	Charmouth1	502
2	BlackVen1	502
3	Cranborne1	502
4	Cranborne2	502
5	Ports1.1	233
6	Ports1.2	233
7	Ports1.3	231
8	SF3000.1	501
9	SF3000.2	501
10	SF3000.3	501
11	SF7500	502
12	Mar1	231
13	Mar2	231

Run Name	Latitude (°)	Longitude (°)	Aircraft altitude above ground (ft)	Aircraft amsl (ft)
Charmouth1 (502)	50.71326	-2.97641	7500	7500
Charmouth1 (502)	50.71326	-2.79973	7500	7500
BlackVen1 (502)	50.7042	-2.89261	7500	7500
BlackVen1 (502)	50.75998	-2.89261	7500	7500
Cranborne1 (502)	50.88715	-2.0432	7500	7854
Cranborne1 (502)	50.96601	-1.90107	7500	7854
Cranborne2 (502)	50.88844	-1.93001	7500	7854
Cranborne2 (502)	50.98348	-2.05487	7500	7854
Ports1.1 (233)	50.73475	-1.34435	10000	10000
Ports1.1 (233)	50.64611	-0.98445	10000	10000
Ports1.2 (233)	50.77601	-0.90548	10000	10000
Ports1.2 (233)	50.86329	-1.26543	10000	10000
Ports1.3 (231)	50.78372	-1.31347	10000	10000
Ports1.3 (231)	50.69459	-0.95198	10000	10000
SF3000.1 (501)	51.04126	-1.12056	3000	3358
SF3000.1 (501)	51.11349	-1.12056	3000	3358
SF3000.2 (501)	51.11349	-1.1587	3000	3358
SF3000.2 (501)	51.04126	-1.1587	3000	3358
SF3000.3 (501)	51.04126	-1.12991	3000	3358
SF3000.3 (501)	51.11349	-1.12991	3000	3358
SF7500 (502)	51.04126	-1.11623	7500	7858
SF7500 (502)	51.11349	-1.11623	7500	7858
Mar1 (231)	51.39868	-1.56644	10000	10525
Mar1 (231)	51.46665	-1.99503	10000	10525
Mar2 (231)	51.41702	-2.01243	10000	10591
Mar2 (231)	51.34946	-1.58645 21	10000	10591

Demonstration flight planning (5)

Cranborne1 / Cranborne2

Charmouth1 / BlackVen1 / Charmouth2 / BlackVen2

Demonstration flight planning (6)

Ports1.2 SF3000.2

